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Abstract

Tabular data arises frequently in multiple areas of computer science, often in contexts in
which the compile-time guarantees of static typing would offer significant benefits. How-
ever, tables pose challenges for many type systems due to their heterogeneous structure and
the nontrivial type-level computations required to express many common table operations.
This thesis investigates the realizability of rich static typing for tabular programming by
implementing a tabular-data library in Lean, a dependently typed functional programming
language. We provide a nearly complete formal verification of our implementation with re-
spect to the Brown Benchmark for Table Types. We also present several mechanisms for
improving the ergonomics of our library through metaprogramming and syntax extensions
that occlude the type system’s technical machinery from users.
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1 Introduction

Tabular data arises frequently in data science, database systems, and other areas of computer
science. Data sets, relational databases, and spreadsheets all frequently represent data as
rows of entries containing values for each of a collection of labeled columns.

Many popular libraries for interacting with tabular data are implemented in dynamically
typed languages [6, 11, 20]. By contrast, there exist comparatively few tools for manipulat-
ing, or indeed even representing, tables in statically typed languages. Yet static typing offers
several potential benefits over dynamic typing for working with tabular data. Sufficiently ex-
pressive type systems can detect many classes of errors at compile time, providing stronger
safety and correctness guarantees. In the domains in which tabular data most frequently
appears, such guarantees are particularly valuable. Forestalling would-be runtime errors
provides greater assurance of database integrity by preventing invariant-violating code from
even compiling. When executing computations on large data sets, runtime errors may not
be detected until well into a long-running query; compile-time error detection thus offers
a significant time savings in addition to increased confidence in the correctness of the final
results.

Whence, then, the dearth of statically typed tabular-data libraries? Apart from the pop-
ularity of dynamically typed languages, this is likely at least partially attributable to the
significant type-level book-keeping requirements of tables, which are infeasible or impossi-
ble to realize in some type systems. Because each column of a table may contain a distinct
type of data, and a table may contain arbitrarily many columns, it is difficult even to encode
an adequately general datatype for representing tables in many type systems. For instance,
the type systems of many ML dialects do not allow data types to be parameterized over an
indeterminate number of type arguments. Moreover, in order to describe the type of their
output, many common table operations require nontrivial type-level computations whose
complexity can exceed the expressive capabilities of many type systems. Even the seemingly
straightforward operation of horizontally appending one table to another (so as to form a
new table with the columns of both inputs) requires a type-level notion of concatenation
that some type systems are incapable of expressing.

This thesis investigates the realizability of rich static typing for tabular programming
by implementing a tabular-data library in Lean, a dependently typed functional program-
ming language. We take advantage of Lean’s facilities for formal proof to verify various
properties of our table API In addition to demonstrating the feasibility of a dependently
typed tabular programming library, we present several mechanisms for enhancing the er-
gonomics of such a library and occluding the type system’s technical machinery from the
end user. We discuss some of the ways in which our library depends on behavior for which
languages like Lean may not be optimized and methods for circumventing these challenges.
Finally, we consider several areas for further refinement to increase both the type-safety
and usability of this table library or others like it. The code for this thesis can be found at
https://github.com/jrr6/lean-tables/tree/thesis.

2 Background

2.1 Definitions

Our definition of a table is inspired by the definition used by the Brown Benchmark for Table
Types (B2T2) [12], although we modify some terminology to better suit the representation
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used in this thesis. A table consists of a schema, which specifies the name of each column
and the type of data each contains, and a body containing rectangularly arranged data. We
refer to the name-type pairs in a schema as headers. The table body is organized into rows
and columns. There is precisely one column, identified by the name s and containing data
of type 7, corresponding to each header (s, 7) in the schema. A table may contain arbitrarily
many rows, each of which contains exactly one possibly-empty cell for each column of the
table. Symmetrically, we may consider each column as containing one cell for every row in
the table, though we will generally prefer to consider tables row-wise.

2.2 The Brown Benchmark for Table Types (B2T2)

Many tools exist for programming with tabular data [6, 11, 14, 16, 20]. Rather than at-
tempt to replicate the functionality of any one of these tools, many of which are specifically
tailored to the domains of data science or database programming, we follow the specifica-
tion provided by B2T2. The B2T2 specification is intended to serve as a “fixed reference
point” for table libraries of this sort. Drawing on popular tabular programming tools like
the foregoing, B2T2 specifies a realistic suite of table functionality and also—of particular
interest for this thesis—aims to exercise the type systems within which tabular-data libraries
are implemented. The specification provides a general definition of the table data structure,
an API of common table operations, and contracts for each function in the API. It contains a
collection of test cases and example programs to assess the correctness and expressive capac-
ity of an implementation. It also supplies several invalid programs that test whether errors
are detected at compile time as well as the quality of error messages generated by the type
system [12].

As of this writing, two implementations of the B2T2 specification exist [13]. The B2T2
authors provide a reference implementation written in TypeScript. The second implemen-
tation is written in Empirical, a data analysis-focused language with support for statically
typed data frames [19]. We focus on the TypeScript implementation as a basis of compari-
son for our own because it is more comprehensive and because, unlike Empirical, TypeScript
and Lean are general-purpose programming languages whose type systems and built-in lan-
guage functionality are not explicitly tailored to tabular programming applications.

The TypeScript implementation of B2T2 employs a row-wise table representation with
a combination of type- and data-level mechanisms for encoding schemata. A table body is
represented by an array of rows, each of which is represented by a dictionary whose fields are
column names and whose values are cells. A type-level dictionary parameterizing the table
type maps column names to the type contained in the corresponding column. This allows the
type-correctness of rows with respect to a table’s schema to be statically checked: incorrectly
typed cells, invalid column names, and missing column names all raise compile-time errors.
However, this dictionary representation alone does not enforce an ordering on columns in
a schema; to accomplish this, the ordering of columns is maintained as a header field! of
table objects. Functions on tables must therefore independently specify their behavior with
respect to both column names and types (at the type level) and column ordering (in the
header data field).

Using this combination of type- and data-level specification, the TypeScript implemen-
tation is able to characterize the schematic behavior of all the table operations in the B2T2
specification. However, due to limitations of TypeScript, it is possible to define invalid values

1B2T2 uses “header” to mean “the sequence of column names of a table.”



of the table type which may not be caught at compile time or, in some cases, even at runtime.
For instance, the header field is constrained only to contain keys of the type-level dictionary,
but it cannot enforce the requirement that each name appear exactly once. Therefore, it is
possible to define the header to contain more entries than the table has columns (by repeat-
ing names) or to omit columns entirely. Moreover, the implementation makes considerable
use of type-casting to coerce values to types that TypeScript fails to recognize them to have.
The compile-time guarantees provided by the type system for this implementation are thus
somewhat limited, and there is still some onus on the programmer to maintain invariants
that cannot be enforced by the type system. Because, unlike TypeScript’s type system, the
type theory of Lean is sound [5] and supports true dependent types, we see this as an area
in which Lean can offer benefits over existing implementations.

Perhaps the most significant advantage of the TypeScript implementation is its ease of
use. The types of tables and functions thereupon are relatively straightforwardly expressible,
and table operations appear to the user much as would an analogous untyped implementa-
tion in pure JavaScript. The benefits of the library’s type-level guarantees thus do not appear
to incur any meaningful ergonomic cost. In contrast, dependent typing adds considerable
complexity to our implementation, though we manage to ameliorate at least some of these
ergonomic challenges through the use of syntactic extensions and metaprogramming (see
section 6).

2.3 Motivating Dependently Typed Tables

Lean, as noted, is a dependently typed functional programming language. In this and the
subsequent section, we discuss the key properties of Lean’s type theory of which our table
implementation makes use. Because work on this project began in spring of 2022, at which
time many features and definitions now present in Lean 4 and its library did not yet exist,
some of this project’s design choices may not match current conventions, or take advantage
of more recent developments, in Lean. Importantly, our code does not make use of either
Std4 [10] or Mathlib [8], two Lean 4 libraries which now provide some of the auxiliary
definitions, especially for lists and integers, that we implement in our library.

To motivate the utility of dependent types, we first consider in greater detail why sim-
pler type theories are inadequate for representing tables in full generality. Type theories
with support for parametric polymorphism, such as those of most ML dialects, allow for the
declaration of inductive data types parameterized over some index type: the declared type
depends on the type-level argument it is given. A canonical example is the type family of
lists, which are parameterized over the type of their elements:

inductive Liste (a : Type) : Type
| nil : Liste «
| cons : a - Liste a - Liste «

In such a type theory, one might represent a table as a list of lists, where each list repre-
sents one row of data, together with a list of strings containing the column names:

def Tablee (a : Type) : Type :=
Liste String x Liste (Liste )

Such a representation severely limits the kinds of tables we can represent, since every
column of a table of type Tablee a isrequired to have the same type a. Moreover, it is possi-
ble to construct ill-formed values of type Tableo a, since the type carries a well-formedness
invariant that is inexpressible in the type itself: namely, that every row list is of equal length.
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Dependent types allow us to remedy both of these shortcomings. In dependent type
theories such as Lean’s, one can specify not just a type but data (such as a natural number,
string, or list) as the index of a type constructor. A heterogeneous list is a common example
of such a data type. It is parameterized over a list of types, each of which specifies the type
of the corresponding entry at the data level:
inductive HList : List Type - Type 1

| nil : HList []
| cons {a : Type} {as : List Type}
o -» HList as -» HList (a :: as)

(Note that arguments specified in braces are implicit: they are not written when apply-
ing the constructor and are instead inferred by Lean. The notation Type 1 indicates that
heterogeneous lists are elements of a higher type universe than the types over which they
are parameterized; we discuss type universes further in section 2.4.)

Heterogeneous lists facilitate the representation of differently typed columns in tables.
A heterogeneous list parameterized over a list of types as corresponds to a row in a table
whose columns, from left to right, contain the types specified by as. The body of a table
with column types as, then, can be represented as a list of type List (HList as). This
also remedies the second shortcoming of our simply typed approach: since heterogeneous
lists must contain exactly one element for each element of the type-level list as, their lengths
are fully determined by their type, allowing us to enforce the consistency of row lengths at
the type level.

While the above encoding suggests a general approach for a dependently typed table
representation, it does not fully capture our definition from section 2.1. In particular, it does
not allow us to refer to columns by name, nor does it enable the representation of empty cells.
We describe the modifications required to accommodate these features in the discussion of
our table representation in section 3.1.

2.4 The Type Theory of Lean

Lean’s type theory is based on the Calculus of Inductive Constructions [5]. It contains a
non-cumulative hierarchy of type universes, at the base of which is the universe Prop of
propositions. Above Prop are “data” universes Type n for each natural-number universe
level n (Type 0 is also abbreviated as Type). A definition in Lean can be made universe-
polymorphic by parameterizing the level of a universe over a level variable u. For instance, a
universe-polymorphic variant of HList would have type List (Type u) - Type (u + 1),
where u is a universe-level variable, and the types of the a and as arguments to the cons
constructor would change accordingly.

The universe Prop of propositions has several features that differ from the Type universes
above it. One such feature is proof irrelevance: for any type P : Prop, any two values of type
P are equal. To avoid inconsistency with proof irrelevance, Lean disallows large elimination
from Prop: values computed by recursion on a proof value in Prop must themselves be
propositions, not data in a higher type universe. That is, the motive for a propositional
recursor must always be a proposition [2].

An exception to this prohibition of large elimination is subsingleton elimination: a propo-
sitional inductive type—such as an equality type—with at most one constructor, all of whose
arguments are Prop-valued or appear as indices of the proposition, can be eliminated into
higher type universes [3]. This enables casting a data value in a non-propositional type uni-
verse along a proof of equality: given a data value of type T a and a proof that a = b, one
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can cast the data value to type T b by recursion on the proof of equality. Such casting is
necessary if one wishes to supply a value whose type is provably but not definitionally equal
to the type Lean expects—that is, the two types cannot be shown to be equal merely by
unfolding definitions [4].

Lean’s type system also includes support for type classes. Type classes provide a form of
ad-hoc polymorphism, allowing a programmer to define type-specific instances of a specified
class of operations. Instances of type classes are registered in a database and can be automat-
ically synthesized by Lean. Type-class arguments to functions are marked as instance-implicit
using brackets, indicating to Lean that they should be automatically synthesized [18]. Dur-
ing type-class resolution, Lean will expand defined symbols which are marked as “reducible”
in the type for which a class is being synthesized. However, definitions that are not marked
as such (as is the case by default) will not be reduced. Since type-class resolution will fail
if a type cannot be reduced to one for which a type class is registered, it is often desirable
that definitions appearing in types be reducible. For instance, while there exists a ToString
instance for the type Nat, resolution of the ToString class for the type Nat' defined by
def Nat' := Nat would fail because the definition is not reducible. A type class of partic-
ular interest for our table implementation is DecidableEq, the class of types with decidable
equality.® This type class provides a means of specifying a decision procedure for equality
of values of a given type.

3 Data Types and API Structure

3.1 Table Representation

As discussed in section 2.3, a list of heterogeneous lists provides a natural dependently typed
representation of the structure of a table body. We adapt this basic structure to support two
desirable features of tables in practice. First, columns in tables should be identifiable by
names rather than merely by their indices within each heterogeneous list. Second, many
real-world applications in which tabular data appears must accommodate the absence of
data; accordingly, we follow B2T2 in taking possible emptiness of entries as a primitive notion
in our table representation. While this second constraint may be undesirable in certain
applications, it is relatively straightforward to remove without substantially affecting the
representation we adopt or the operations we define thereupon.

We define our table body representation in three stages: a table comprises a list of rows;
a row is, roughly, a heterogeneous list of cells; a cell is a possibly-empty container of a value.
We do not explicitly encode columns as part of our representation, but column ¢ of a table
can be obtained by taking the entry for ¢ from each row of the table.

At the type level, we parameterize a table over its schema. A schema is a (homogeneous)
list of headers, which are pairs consisting of the name of a column and the type of data it
contains. These and the preceding definitions are shown in figure 1.

Rows are also parameterized over schemata. The second component in each entry in a
schema determines the type of the element at the corresponding index in the row. As seen
in figure 1, the schema replaces the List Type argument to HList seen in section 2.3; we
have simply added column name information to that list.

2For a programmatic use case such as ours, we would now prefer to use the LawfulBEq (“lawful Boolean
equality”) class, which was added to Lean 4 after work on this project began. Instances of this type class are
automatically generated for types that instantiate DecidableEq.



def Header {n : Type u n} :
def Schema {n : Type u n} :

(n x Type u)
List (@Header n)

structure Table {n : Type u_n} [DecidableEq nl (hs : @Schema n) where
rows : List (Row hs)

inductive Row {n : Type u n} [DecidableEq n]
: @Schema n - Type (max u_n (u + 1))
| nil : Row []
| cons {name : n} {t : Type u} {hs : Schema} :
Cell name Tt - Row hs -» Row ((name, T) :: hs)

inductive Cell {n : Type u n} [DecidableEq n]
(name : n) (Tt : Type u) : Type (max u u_n)
| emp : Cell name T
| val : T » Cell name T

Figure 1: Core data types for representing tables

def students : Table [("name", String), ("age", Nat)] :=
Table.mk [
Row.cons (Cell.val "Bob") (Row.cons Cell.emp Row.nil),
Row.cons (Cell.val "Alice") (Row.cons (Cell.val 17) Row.nil),
Row.cons (Cell.val "Eve") (Row.cons (Cell.val 13) Row.nil)

Figure 2: A sample table and its explicit representation. (A more convenient notation for
table values is shown in section 6.1.)

Rows do not, however, directly store elements of the types specified by their schemata.
Instead, each entry in a row is a cell parameterized over the name and type of the column in
which it appears. Since cells may be empty, this builds the possibility of emptiness into our
table representation. Just as rows enrich standard heterogeneous lists with column names,
so does a cell enrich a standard option type with column-name information. Figure 2 shows
the encoding of a simple table using this representation.

We enforce one further constraint on our tables: while we do not require that columns
be named by strings, we do require that equality of the column-name type be decidable.
This is not strictly required by all table operations, and much of our representation would be
relatively unchanged if this requirement were removed, since individual table functions can
still require a decidable-equality type-class argument. However, given the identifying role
column names are intended to play, enforcing decidable equality seems to be a reasonable
constraint and prevents the possibility of constructing tables on which a significant number
of our table operations fail to work.



Constructors Subtable Missing Values

* emptyTable * selectRowsl * completeCases

* addRows * selectRows2 * dropna

* addColumn * selectColumns1 * fillna

* buildColumn * selectColumns2 Data Cleaning

* vcat * selectColumns3 * pivotLonger

* hcat * head * pivotWider

* values * distinct Utilities

* crossJoin * dropColumn * flatten

* leftJoin * dropColumns * transformColumn
Properties o tfilter * renameColumns

* Nrows Ordering * find

* ncols * tsort * groupByRetentive

* header * sortByColumns * groupBySubtractive
Access Subcomponents * orderBy * update

¢ getRow Aggregate * select

* getValue * count * selectMany

* getColumnl * bin * groupJoin

» getColumn2 * pivotTable * join

* groupBy

Figure 3: B2T2 API functions (see [13] for documentation)

3.2 Table API

Our implementation exposes an API comprising the 49 common table operations specified by
B2T2 (see figure 3). These are intended to represent “idiomatic tasks” when working with
tabular data and were selected with the goal of “reveal[ing] challenges for type systems,” but
they are intended to compose neither a completely minimized set of core table functionality
nor a fully robust table library [12]. Nevertheless, they represent a range of common kinds
of table operations, including joins, sorts, pivots, and functional combinators. We describe
in this and the following sections several benefits of dependent types for these operations as
well as some drawbacks encountered in their implementation.

By structural analogy to our table representation, most table operations correspond to
functions at multiple levels of our table encoding. First, we state the type of an operation by
defining a function on schemata that describes how an operation transforms the schema(ta)
of its input(s). Second, the “horizontal” functionality of an operation—that is, its manipula-
tion of columns in a given row—is implemented as a function on rows (these are, effectively,
heterogeneous-list operations). Third, the operation’s “vertical” functionality—its manipu-
lation of rows in the table body—is implemented as a function on lists.

As an example, we consider selectColumns3, a function which forms a new table by
selecting columns cs from an input table t. We first describe the schema of the resulting
table. We represent our selected columns cs as a list of (dependent) pairs, each consisting
of a header together with a proof of its membership in the schema (we refer to these as
certified headers). Consequently, the schema of the resulting table is simply the list of headers
(without their proofs): that is, Schema.map Sigma.fst cs (where Schema.map is provably
equal to List.map). Our row-wise operation is simply a list map: we do not add, remove,
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or reorder rows in our output; we merely select columns from each. Finally, we define a
per-row operation Row. pick that selects each of the columns cs from a row. Since rows, like
tables, are parameterized over schemata, the type of Row. pick also invokes our schema-level
function on cs: it maps a Row schema to a Row (Schema.map Sigma.fst cs). Combining
these three operations, we can define selectColumns3 as follows:

def selectColumns3 (t : Table schema) (cs : List (CertifiedHeader schema))
Table (Schema.map Sigma.fst cs) :=
{rows := List.map (A r => Row.pick r cs) t.rows}

While a simple example, this three-tiered structure is representative of many table functions
we define in this library.

An important consequence of our choice of table representation is that we can define
the type of such a function so that it is definitionally equal to the type of its body without
type-casting. This simplifies our code and greatly eases its verification. Such considerations
motivated in part the use of lists rather than a more efficient data structure—such as a dic-
tionary, as the TypeScript implementation uses—for representing schemata. Because of the
similarity in structure between our schemata and table bodies, recursive type-level opera-
tions naturally match the recursive structure of data-level operations. Indeed, we avoid the
need for type-casting in nearly all API functions (we mention one exception in section 4.2).

Moreover, changing the representation of schemata alone would likely offer little runtime
performance benefit, since schematic look-ups occur principally at compile time. As we
will describe in section 3.3, these look-ups produce proofs that effectively serve as indices
for runtime look-ups in table bodies. These table accesses, not schematic ones, principally
impact runtime performance. Therefore, to realize runtime performance benefits from the
use of more efficient data structures, we would need to modify our table body representation
as well. We discuss this possibility further in section 8.2.

3.3 Proof Types

The example of selectColumns3 highlights a common feature of many table functions: they
require the user to specify one or more columns on which to act. (Other examples include
specifying the name of a column by which to sort the table or the name of a column to drop.)
If the column name provided to such an operation is invalid, however, the operation cannot
be completed. Some means must therefore be provided to check the validity of a column
name. In many table libraries, this check occurs at runtime, but the type-level schema as-
sociated with a table in our representation allows this to be verified at compile time. We
implement this checking by requiring all functions that take a column name as an argu-
ment to also take a proof of that name’s membership in the schema of the provided table.
We define two proof types, Schema.HasName and Schema.HasHeader, for this purpose. (A
CertifiedName or CertifiedHeader is a pair of a name or header together with its proof.)
The desirability of multiple predicates arises from the differing informational needs of differ-
ent table functions: some require only the name of a column on which to act, while others
additionally require the corresponding type of data that column stores. For instance, to drop
(delete) a column, we need only know the name of the column to drop; to sort by a column’s
contents, however, we must also have access to the type of the column’s data (to ensure, for
example, that an appropriate ordering class has been registered for that type).

Values of these proof types not only provide correctness guarantees but also, because they
are constructive proofs, serve as indices into a schema for the table. Table operations that
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accept these proofs can recursively deconstruct them to effectively obtain an index into the
schema (and the data it parameterizes) corresponding to the requested column. Defining
such functions by structural recursion on proofs, rather than performing equality checks
between the requested column name and each successive name in the schema, makes them
easier to verify (by straightforward induction on the proof) and improves performance by
exploiting the schema information captured at compile time to avoid redundant equality
checks at runtime. In some suitably optimized programming languages, this technique can
even be used to avoid the need to store column names at all at runtime, since column accesses
are mediated solely by the corresponding proof objects [22].

Crucially, these are proof types, not propositions. Because Lean disallows large elimi-
nation from Prop, data-producing table functions cannot be defined by recursion on proofs
in Prop. Accordingly, Schema.HasName and Schema.HasCol are (universe-polymorphically)
Type-valued. We further discuss the tensions between the need to compute with proofs and
the properties of Lean’s propositional universe in section 7.

4 Implementation Challenges

4.1 Type-Level Computation and Reducibility

A benefit—and challenge—of our table representation is the ability to precisely encode the
manner in which table operations modify tables’ schemata. One of the simplest examples is
that discussed in section 1: the hcat operation, which horizontally concatenates two tables
together, producing a table with the columns of both (empty cells are inserted in each row
for the columns from the opposite table). Since a Schema is merely a List, a natural type for
this function would be Table si1 - Table s: - Table (List.append si1 s:). However,
built-in List functions are only semireducible, meaning that certain type-level operations
and type-class synthesis will not unfold their definitions. This poses a range of challenges
for the usability of the library. For instance, simple equality checks between tables may fail
because Lean is unable to synthesize the appropriate decidable-equality type-class instance.
Moreover, some table functions require the synthesis of decidable equality instances for rows
or tables with a given schema; if the output of a function whose return type includes a
semireducible function is passed to one of these functions, the relevant type class will not be
synthesized and the function will fail to evaluate. While Lean 3 provided a mechanism for
adjusting the reducibility of any definition after its declaration [1], Lean 4 disallows such
modification for imported definitions. It is therefore not possible to adjust the reducibility
of built-in List functions. It is also not clear that such an adjustment would be desirable,
since, outside of this library, List functions are generally not used in a manner that requires
reducibility, and needlessly marking functions as reducible may incur performance penalties
during unification [3].

In the initial development of this library, we used a custom testing framework to force
the unfolding of these definitions so that the type classes necessary to perform equality
checks on test cases could be synthesized. Ultimately, however, such workarounds scaled
and generalized poorly. Consequently, the table library re-implements the subset of built-
in List functions used in type specifications as reducible functions in the Schema names-
pace. These functions are identical to their List counterparts but are tagged with the
@[reducible] attribute, making them fully reducible and thereby circumventing the chal-
lenges discussed above. The type of hcat, for example, is thus Table s1 - Table s2 -
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Name ‘ Age ‘ Test ‘ Score

Name | Age | Quiz 1 | Quiz 2 _ Alice | 17 | Quiz 1 6
T pivotLonger . .
Alice | 17 6 8 ———— Alice | 17 | Quiz 2 8
Bob | 12 8 9 phvotiaer Bob | 12 | Quizl| 8
(a) Table before applying pivotLonger Bob 12 | Quiz 2 9
(or afte‘r‘ a}:plyinﬂ; pi\’/yo.tw'ider to (b) Table after applying pivotLonger
columns “Test” and “Score” in figure 4b) to the “Quiz 1” and “Quiz 2” columns

in figure 4a with new column names
“Test” and “Score”

Figure 4: An example of the pivotLonger and pivotWider operations

Table (Schema.append si1 s2). The Schema namespace provides lemmas proving equal-
ity between corresponding schema and list functions, which we use in our verification of
table functions that depend on these Schema definitions to take advantage of existing lem-
mas proved for their List counterparts.

4.2 Several Functions of Interest

Several functions in the B2T2 specification posed interesting challenges for our Lean imple-
mentation. Here, we highlight two cases of note: “pivot” functions, which require significant
type-level computation and transfer of values between the type and data levels; and “group-
ing” functions, which produce tables containing tables. We then discuss another class of
functions of particular interest in section 5.

The pivotWider function is arguably the most complex in the B2T2 specification. It is the
inverse of pivotLonger, which moves the data stored in a specified collection of columns into
two new columns, one containing the name of the former column and the other the value it
formerly held, duplicating each row of the input table for each column to be recorded. An
example is shown in figure 4.

As this example illustrates, pivotWider performs complex computations not only at the
data level but at the type level as well. Given a table t with schema sch and column names c1
and c2 therein, the schema of pivotWider t cl c2is computed by first removing c1 and c2
from sch, then appending to the resulting schema the list of all the unique entries in column
c1 each paired with the type contained in column c2. Moreover, the computations done at
the data level must be written such that the resulting table’s schema definitionally equals
(or else must be cast to) this value. While we nearly universally manage to avoid the use of
casting elsewhere in our implementation, we end up relying on non-definitional type-casts in
pivotWider, and moreover resort to Lean’s tactic mode—generally reserved for generating
proofs rather than data—to construct one particularly complicated proof term (though we
use only a small number of relatively simple tactics).

The most significant challenge for pivotWider as currently written is that its type relies
on several semireducible functions, meaning that type-class resolution and other operations
which depend upon type-level reduction may fail on expressions involving this function.
This is not, however, a theoretical limitation; though we do not do so, we see no impediment
to implementing reducible versions of each of the functions used in the type of pivotWider
and updating its data-level computation and proofs to match these new type-level functions.
Despite these challenges, our success in implementing pivotWider, and in doing so in a
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Key Groups
Dept | Code | Title Dept | Code Title
CS 150 | Programming CS CS 150 | Programming
Math | 101 Calculus CS | 200 Algorithms
CS 200 Algorithms Dept | Code Title
Math | 202 Analysis Math Math | 101 | Calculus
(a) Table before grouping Math | 202 Anal}’SiS

(b) Table after (retentive) grouping by “Dept”

Figure 5: An example of the groupByRetentive operation’s behavior

manner that occludes its internal complexity from the user, suggests that our representation
is sufficiently robust as to represent real-world table operations that do not neatly align with
traditional type—data distinctions.

Two “grouping” operations in the API, groupBySubtractive and groupByRetentive,
have the interesting property of producing tables that themselves contain tables. These
functions produce a two-column output: the first column is a requested column from the
input table, while the second contains tables consisting of all rows in the input that contained
the corresponding entry in the first column. (The subtractive variant removes the selected
column from the subtables in the output.) An example is depicted in figure 5.

As the types in figure 1 indicate, tables belong to a higher type universe than the values
they contain, all of which must belong to the same type universe. This poses a challenge
for representing a table like that depicted in figure 5b: the tables in the right-hand column
contain strings and natural numbers, both of which are in the universe Type, meaning that
the tables themselves have types in Type 1. However, the “Key” column consists of strings,
which, as just noted, are in Type. Since Lean does not have a cumulative hierarchy of types,
we must lift the elements of the left-hand column to Type 1 in order for the table’s contents to
belong to a consistent type universe. While not technically difficult, this makes working with
nested tables and tables containing data from multiple type universes somewhat tedious, as
all values of types from lower universes must be prefixed with ULift.up to lift them to the
appropriate universe.

5 Iterated Table Operations

A particularly challenging class of functions for our table representation comprises those
operations which modify a table’s schema by acting on multiple columns simultaneously.
Such functions complicate the notion of a certified column name or header because, as we
will show, the schema for which such a value must be certified may turn out not to be the
schema of the original table argument passed to a function.

To motivate these difficulties, we consider the simplest function of this kind in the B2T2
specification, renameColumns, which renames multiple specified columns in a table. A more
straightforward version of this function (not part of the B2T2 specification) is renameColumn
below, which renames just one column and is comparatively easy to implement. It takes as
arguments a table, a name that belongs to that table’s schema, and a new name for the cor-
responding column. Its effect on its output’s schema is described by Schema. renameColumn,
which replaces the corresponding name in the schema with the new value:
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def renameColumn (t : Table schema) (cnm : CertifiedName schema) (nm' : n)
Table (Schema.renameColumn schema cnm.snd nm') :=
{ rows := t.rows.map (A r => Row.renameCell r cnm.snd nm') }

(Recall that a CertifiedName is a dependent pair of a column name and a proof of
schema membership; Schema. renameColumn and Row. renameCell require only the latter.)

Naively, it would seem that renameColumns could simply take as an argument a list of
pairs each containin an (existing) certified name and a (new) name. It could then fold
over this list, invoking renameColumn for each pair and maintaining the updated table as an
accumulator:

def renameColumnsNaive (t : Table schema)
(nms : List (CertifiedName schema x n)) :=
nms.foldl (A acc (cnm, nm') => renameColumn acc cnm nm') t

But this approach does not work. Consider a table t containing a single column named
"ID". Suppose we apply renameColumnsNaive to t with the name-list argument [ (("ID",
~), "name"), (("ID", ), "ident")] (we elide proof terms for clarity). While each en-
try supplies a valid name ("ID") for the initial schema in its first component, this name is not
valid for the table updated at the second iteration of the fold, in which the column formerly
named "ID" is now named "name". In other words, renameColumn is called in the second
iteration with a name ("ID") that is not among those in the schema (namely, "name").
Indeed, the application of renameColumn in the above code does not type-check precisely
because acc may not have the schema schema for which cnm is a certified name. To remedy
this issue, each entry of the sequence nms must store in its first component a CertifiedName
not for the initial schema but rather for the schema that results after updating the initial
schema according to all preceding entries in nms. (Thus, the second entry in the sequence
would need to provide a certified name for the schema containing only "name".)

We write “sequence” in the preceding sentence because a simply typed list is inadequate
to represent such a collection. Since the schema for which a name is certified is a type-level
argument, each entry in such a sequence has a (possibly) distinct type; lists, however, cannot
store heterogeneously typed data. Nor are heterogeneous lists, as introduced previously, ad-
equate: the type of each entry of the sequence must depend on the entries that precede it, but
HLists do not allow for type dependencies between elements. Instead, we must introduce
a new data structure—a form of heterogeneous list that allows the type of each element to
depend on prior elements—to represent the arguments to a function like renameColumns.
Each entry of such a sequence can be thought of as representing an “action” that modifies the
schema of a table. Each entry acts on the schema that results from all prior entries’ actions
on an initial schema. Accordingly, we term this data structure an action list:

inductive ActionList {n : Type u n} [DecidableEq n]
{K : @Schema n - Type u}
(f : V (s : @Schema n), K s - @Schema n)
@Schema n - Type _
| nil {schema} : ActionList f schema
| cons {schema} : (entry : Kk schema) -
ActionList f (f schema entry) -
ActionList f schema

An action list is parameterized over a function f on schemata. Each entry in the action
list is an argument to this function. Specifically, each entry is the second argument to f for
the case where its first argument is the schema that results from successively applying f, with
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action arguments given by the preceding entries of the action list, to the schema over which
the head of the action list is parameterized. (Notice that the type of the action argument k
schema to f depends on the schema argument to f. This is because the “action” argument
to f must be allowed to depend on the schema on which it is acting: for instance, it may
contain a certified name or header for the schema. Indeed, this is the very dependence that
motivated the introduction of action lists.)

In the case of renameColumns, the schema-level function f is Schema. renameColumnCN,
which updates a schema for an individual column renaming; its type is

Schema. renameColumnCN :
(s : @Schema n) - (nmAndNew : n x n) x Schema.HasName nmAndNew.fst s -
@Schema n

Accordingly, given a schema schema, the elements of an action list of type ActionList
Schema. renameColumnCN schema are dependent tuples containing pairs of existing and new
names along with proofs that the existing names are in the schema to which the action-
list entry will be applied—not merely the original schema schema. Using the name tactic
(discussed in section 6) for generating name-membership proofs, the following is an explicit
representation of such an action list:

ActionList.cons (("ID", "id"), by name)
(ActionList.cons (("Age", "age"), by name) ActionList.nil)
: ActionList Schema.renameColumnCN [("ID", String), ("Age", Nat)])

It is then possible to define a function that updates schemata analogously to folding over
the sequence of inputs as in the naive example:

def Schema.renameColumns {n : Type u_n} [DecidableEq n]
(s : @Schema n) - ActionList renameColumnCN s - @Schema n
| s, ActionList.nil => s
| s, ActionList.cons c ccs => renameColumns (renameColumnCN s c) ccs

The table function renameColumns is defined similarly on cells within each row; we spec-
ify its type using Schema. renameColumns:

renameColumns : Table schema - (ccs : ActionList Schema.renameColumnCN schema) -
Table (Schema.renameColumns schema ccs)

As Schema. renameColumns illustrates, action lists make implementing this kind of func-
tion relatively straightforward: because we recursively perform corresponding “actions” at
both the type and data levels according to the entries of our action list, it is not, for example,
necessary to cast proofs or values to a type other than that to which they definitionally re-
duce. Action lists also provide more fine-grained guarantees for operations such as flatten,
which “flattens” columns containing sequential data into separate rows, as shown in figure
6. Using action lists, a column containing type List (List a) can successfully be flattened
twice, while attempting to do the same to a column containing type List a (for some a not
an instance of List) will fail. By contrast, only checking action arguments with respect to
the initial schema (as does, for instance, the TypeScript implementation [13]) will allow the
user to attempt to flatten a column of non-nested lists twice, causing a runtime error.

However, action lists present two important drawbacks. First, as shown previously, they
are unwieldy to write and often require explicitly specifying arguments (such as membership
proofs or, in more complicated functions, type-class instances or column-type arguments)
that could be inferred from context. We make use of Lean’s metaprogramming and syntax-
extension features to hide much of this complexity from the user; this is discussed in section
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Name ‘ Age ‘ Exams Taken ‘ Scores

Name | Age | Exams Taken | Scores Alice | 17 midterm 88
Alice | 17 | [midterm, final] | [88, 85] Alice | 17 final 85
Bob 12 | [midterm, final] | [77, 87] Bob 12 midterm 77
(a) Table before flattening Bob 12 final 87
(b) Table after flattening “Exams Taken” and
“Scores”

Figure 6: An example of the flatten operation’s behavior

6. Secondly, action lists and the behavior of functions defined thereupon pose a significant
challenge for specification and verification, which we discuss in section 7.

6 Notation and Metaprogramming

6.1 Basic Notation and Proof Tactics

Lean provides extensive facilities for custom syntax definitions, metaprogramming, and in-
editor widgets for displaying custom Uls [15]. We take advantage of these features to sim-
plify the notation of table values, provide more robust rendering of tables, and automatically
generate arguments to table functions that can be inferred from context.

We define custom syntax for notating Row values analogous to Lean’s built-in notation
for lists. This syntax is flexible, allowing a user to specify or omit cell names and to denote
empty cells. Figure 7 demonstrates its use. We also provide a user widget for rendering
tables as HTML, which improves table rendering in the variable-width Lean Infoview sidebar
and greatly reduces the difficulty of rendering tables within tables, as in the examples from
section 4.2.

Lean’s metaprogramming features allow us to simplify functions that require proof ar-
guments by automating proof search and making these arguments fully invisible in many
situations. While requiring proofs of schema membership for arguments to table functions
provides strong correctness guarantees, it is tedious to supply these proofs in every function
call. This problem is substantially worse with action lists, the elements of which may contain
proofs, type-class instances, and other ancillary arguments in addition to the column name
or other “action” being requested. Using syntax extensions and metaprograms, however,
we can automatically synthesize such arguments at compile time, allowing users to interact
with the library without confronting this machinery and the complexity it entails.

Our library provides two proof tactics, name and header, which perform naive proof
search for Schema.HasName and Schema.HasCol proofs, respectively. Functions that re-
quire a proof of schema membership for a name or header take this proof argument as
an automatic parameter: unless manually specified by the caller, such a parameter is auto-
matically generated by Lean for a given function application using either name or header,
inferring the required proof type from the explicitly provided arguments. A user can thus
write dropColumn students "name", omitting the dropColumn function’s third argument
(a proof of schema membership), and Lean will evaluate this as if the user had supplied the
proof term: dropColumn students "name" (by name). Therefore, in many cases, callers
need not generate such membership proofs themselves, and indeed can omit the argument
entirely when writing a function application.
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/- Definitions using explicit constructors: -/
def studentsMissingEx :
Table [("name", String), ("age", Nat), ("favorite color", String)] :=
Table.mk [
Row.cons (Cell.val "Bob") (Row.cons Cell.emp
(Row.cons (Cell.val "blue") Row.nil)),
Row.cons (Cell.val "Alice") (Row.cons (Cell.val 17)
(Row.cons (Cell.val "green") Row.nil)),
Row.cons (Cell.val "Eve") (Row.cons (Cell.val 13)
(Row.cons Cell.emp Row.nil))
1
def newStudentRowEx : Row [("name", String), ("age", Nat), ("favorite color",
String)] :=
Row.cons (Cell.val "Dave") (Row.cons (Cell.val 14) (Row.cons (Cell.val "red")
Row.nil))

/- Definitions using syntax extensions: -/
def studentsMissing :
Table [("name", String), ("age", Nat), ("favorite color", String)] :=
Table.mk [

/["Bob" , EMP, "blue" 1,
/["Alice", 17 , "green"],
/["Eve" , 13 , EMP ]

]
-- Column-name annotations allow Lean to automatically infer the row's schema
def newStudentRow := /["name" := "Dave", "age" := 14, "favorite color" := "red"]

Figure 7: A comparison of the explicit notation of a table and row and the corresponding
definitions using custom row syntax. Empty cells are denoted by EMP.

Furthermore, by performing a compile-time look-up in a table’s schema, the type of a
column can also be inferred from its name. Accordingly, table functions that in fact re-
quire a full header as an argument only require that the caller supply the name, allowing
the type argument to be inferred during proof search. In many instances, this allows our
library functions to be no more syntactically complex than those in the TypeScript imple-
mentation despite Lean’s stronger typing. An example from the B2T2 specification of sort-
ing a table using tsort, for instance, is written as tsort students "age" true in Lean
and tsort(students, "age", true) in TypeScript—our library automatically generates
the schema-membership proof and associated column type for "age" and synthesizes the
relevant ordering type-class instance.

6.2 Notation for (Action) Lists

Functions that take lists or action lists of arguments require more extensive metaprogram-
matic features and syntactic extensions. In addition to auto-generating proofs, we must also
provide a means of inferring or synthesizing arguments—such as inferrable type arguments
or type-class instances—for which we would rely on Lean’s built-in inference and synthesis
facilities in the single-argument case. (Lean does not, for instance, provide a mechanism to
automatically resolve a list of type-class instances.)
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Consider again the function flatten. The collection of columns to be flattened is pro-
vided as an action list containing dependent pairs of a name c, a type 1, and a proof that the
header (c, List t) appears in the table’s schema. Thus, the operation depicted in figure
6 might be written in the following way:

flatten courses (ActionList.cons ("Exams Taken", String, by header)
(ActionList.cons ("Scores", Nat, by header)
ActionList.nil))

As this example shows, action lists add significant complexity to an operation that is straight-
forwardly expressible in TypeScript: flatten(courses, ["Exams Taken", "Scores"]).
Furthermore, it can be difficult for a user even to determine the expected type of each
entry in the action list, since the type hint provided by Lean simply indicates that an ac-
tion list for Schema. flattenList is expected; the user must then look up the definition of
Schema.flattenList to determine what the appropriate action argument to that function
is. However, as in the single-argument case, all the elements of each dependent pair can be
inferred from just the column name. Exploiting this fact, and adding a list-like syntax for
action lists, we can simplify the above to the following:

flatten courses A["Exams Taken", "Scores"]

The A preceding the sequence of column names invokes a syntax extension provided by
our library that automatically constructs pairs and dependent pairs, synthesizes type-class
instances, performs schema-proof search, and generates proofs of decidable propositions
(which is of use for functions that require, for example, proofs that arguments in an action
list are nonnegative). The full algorithm can be found in the file Notation.lean in the
project repository.

This algorithm is context-sensitive. The function pivotWider, for instance, takes as one
of its arguments an action list containing column names together with proofs that, for some
fixed type T and each name nm, the header (nm, t) appears in the input table’s schema
(since, as can be seen in figure 4, the types of all pivoted columns must be the same in order
for the resulting “value” column to be homogeneous). Accordingly, the action-list expression
appearing in

pivotLonger courses A["Exams Taken", "Scores"] "Key" "Value"

evaluates to the same expression as does

ActionList.cons ("Exams Taken", by header)
(ActionList.cons ("Scores", by header) ActionList.nil)

rather than the string-type-proof tuples generated by the same syntax in the flatten ex-
ample.

We also extend this notation to simply typed lists: the argument [(("age", Nat), by
header, inferInstance)] to the find function, for instance, becomes A["age"]. This
provides the added benefit that casual users of the library need not be concerned with the
technical distinction between simply typed lists and action lists, since the same notation can
be used for both.

One limitation of our proof search (for both action lists and automatic parameters) is that
schemata with repeated column names may cause unexpected behavior. This is due to the
fact that the proof-search tactics simply select the first column matching the specified name
(and satisfying any present restrictions on the corresponding type, such as having certain
type-class instances). One step toward resolving this issue would be to enforce that all
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column names in a table’s schema be unique. It bears noting, however, that certain functions
can break schema uniqueness even if the original schema had unique column names: for
instance, a test from the B2T2 suite attempts to swap the names of columns ("midterm",
Nat) and ("final", Nat) (appearing in that relative order) in a table gradebook as follows:

renameColumns gradebook A[("midterm", "final"), ("final", "midterm")]

However, this test returns gradebook unaltered. The column initially named "midterm" is
renamed "final" by the first renaming, making it the first column with the name "final"—
and thus the column renamed "midterm"—when the second renaming is performed. In
order to perform the desired swap, the arguments must be passed in the opposite order:

renameColumns gradebook A[("final", "midterm"), ("midterm", "final")]

This case is emblematic of a more foundational class of considerations regarding uniqueness
of names in schemata, which we discuss in section 7.2.

6.3 Ergonomics in B2T2 Examples

We assessed the ergonomics of our library and its notational conveniences in part through the
implementation of B2T2’s unit tests, example programs, and sample “buggy programs.” For
straightforward programs like those contained in the B2T2 unit tests—which each involve a
limited number of operations performed on fixed tables—proof arguments need rarely be ex-
plicitly provided, and we can make extensive use of our custom row and action-list notation.
Most of the added complexity in these tests compared to their TypeScript implementation is
due to more careful type distinctions, such as explicitly accounting for empty cells in various
computations.

B2T2’s example programs, which require more complex computations and type-level
constraints, required greater explicit interaction with the underlying type-level machinery,
though we were still able to take advantage of notational and metaprogrammatic conve-
niences in some cases. Two of these programs—one that performs p-hacking on Boolean
data, and one that extracts quiz scores from a grade book—require enforcing certain ho-
mogeneity constraints on a table’s schema. The p-hacking operations require that every
column of a table contain Boolean data. We enforce this using a data-valued predicate
Schema.Homogeneous, using which we can cast a certified header (nm, 1) for a homoge-
neously Boolean schema to a certified header (nm, Bool). Applying this casting is straight-
forward, and homogeneity proofs are invisibly generated by naive proof search as automatic
parameters to ease notation. However, the grade book operations require a more sophis-
ticated homogeneity constraint: all columns whose names begin with “quiz” must contain
numerical data. While we believe that it should be possible to employ an approach similar to
the one we use for the p-hacking examples—and, indeed, [23] realizes such an approach—
we were unable to do so due to an apparent Lean bug that prevented us from defining
a Type-valued predicate enforcing the prefix condition. We instead resorted to a manual
approach using casting along (propositional) equality proofs, which required proving a non-
trivial proposition by hand and did not lend itself to the generality or automation of our
scheme in the p-hacking case.

An additional benefit of having metaprograms mediate interaction with our library is that
we can display custom compile-time error messages when an invalid program is entered,
allowing us to display more relevant information than would ordinarily be generated by
Lean. By default, the naive proof search procedure used by our name and header tactics
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would display the following error after failing to prove that the name "Name" appears in the
schema [ ("ID", String)]:

unsolved goals
case a
 Schema.HasName "Name" []

While the error suggests a failure related to generating a HasName proof for "Name", the
empty-list argument in the goal (resulting from the final stage of our proof search’s traversal
of the original schema) obscures the reason for the proof search’s failure. This may be espe-
cially confusing because these proofs are often generated as automatic parameters, meaning
that a user might not even be aware of the existence of the function argument responsible for
the error. Even if one recognizes the meaning of this error message, one must still identify
the schema for which a HasName proof is required before once can debug the error, since
the original schema does not appear in the message. In our name and header tactics, we
therefore record the initial expected proof type to display a more informative error message
if our proof search fails, allowing the user to immediately identify both the nature of the
failure and the schema in which the unsuccessful look-up was performed:

Could not prove that name "Name" is in schema [("ID", String)]

Using context at the metaprogram level to display informative error messages like these
is especially important in a library where the underlying cause of an error can be many
layers removed from the code responsible for generating the corresponding error message.
One notable example in the B2T2 buggy-code tests involves an out-of-range row index for a
table, which produces the inscrutable error message “failed to reduce to 'true': false.” The
message is specified by a proof tactic invoked by an automatic parameter that evaluates a
Boolean-valued decision procedure, but two layers of context—the fact that the index must
be in bounds for the provided table as well as the corresponding numerical inequality that
the decision procedure is attempting to prove—are lost by the time the error message is
displayed.

7 Verification

7.1 Trends

In addition to implementing the functions specified by B2T2, we have also, with a few ex-
ceptions, formalized their specifications in Lean. The B2T2 specification focuses heavily on
“structural,” type-level properties of tables; accordingly, most of the specifications concern
properties of schemata rather than the data contained in tables. Many proofs—including
many of the more complex ones—involve verifying that a certain name appears in the schema
resulting from a function application or that a certain column contains data of a desired type.
For instance, one specification for groupBySubtractive ensures that each subtable’s schema
is a sublist of the original table’s schema:

theorem groupBySubtractive spec6 :
V (t : Table sch) (c : n) (hc : sch.HasCol (c, 1)),
vV t', t' € (getColumn2 (groupBySubtractive t c hc) "groups" (.tl .hd)).somes -
List.Sublist (schema t') sch

Some of the B2T2 specifications do place structural constraints on the data in table bod-
ies; however, they generally under-specify the behavior of functions. Common examples of
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such specifications are those requiring that tables maintain the same number of rows before
and after certain operations. Since these specifications generally apply to functions imple-
mented by mapping some computation over every row of the table, their proofs are generally
direct applications of the length-preservation property of List.map. A more interesting ex-
ample of a data-level specification is the fourth specification of groupBySubtractive, which
requires that its “key” column contain no duplicates:

theorem groupBySubtractive spec4 [inst : DecidableEq Tt]
VY (t : Table sch) (c : n) (hc : sch.HasCol (c, 1)),
List.NoDuplicates (getColumn2 (groupBySubtractive t c hc) "key")

Because of the considerable interplay between proofs and data in our implementation,
our verification at times challenged or was challenged by Lean’s proof-writing infrastruc-
ture and the distinctive properties of Lean’s propositional universe. A number of our proofs
are actually data—values of type Schema.HasCol or Schema.HasName—which prevented
us from using Lean’s built-in propositional types due to restrictions on large elimination or
other type-universe constraints. Moreover, many of our proofs proceed by induction on our
data-level proof types, which is not currently supported by Lean’s induction tactic due to
the complexity of the types’ indices. Many such proofs were instead written using pattern-
matching, though here too we encountered issues with the cases tactic employed by Lean’s
pattern-matcher. As a result of such issues, we occasionally had to encode in auxiliary func-
tions or lemmas reasoning by cases that might have been more concisely captured by pat-
tern matching. (See, for example, the function Schema.hasNameOfNthsHasName, used in
the third specification for selectColumns3.)

7.2 Divergence from B2T2

One key way in which our implementation diverges from the B2T2 specification—which
has important implications for our verification—is that our table representation does not
enforce the requirement that all names in a schema be unique. Instead, we define a pred-
icate Schema.Unique that can be used to optionally enforce column-name uniqueness of
schemata. We made this decision for three reasons. First, it is common in Lean to decouple
data from proofs in cases where it is possible to do so, rather than embedding the proofs
in the data representation itself [7]. Second, most B2T2 specifications can be stated or
closely approximated without requiring uniqueness. For instance, some specifications of the
form “the column c has type 1” are formalized as Schema.HasCol (c, t) schema; without
uniqueness, this more accurately formalizes “a column c has type t,” but adding a unique-
ness constraint recovers the intended specification. Since specifications that do not require
schematic uniqueness are often amenable to “translation” in this manner by simply adding
an additional uniqueness requirement, proving the more general case was usually prefer-
able. Finally, adding uniqueness requirements may add considerable complexity to some API
functions, further motivating the separation of core data operations from uniqueness proofs.
As discussed in section 6.2, the conditions under which functions like renameColumns pre-
serve schematic uniqueness can be subtle and difficult to state or encode. A full account of
schematic uniqueness would have to provide uniqueness-preservation proofs for each of the
functions in the API. We do not provide such proofs in our implementation, but a precise
account of uniqueness preservation is an important next step to accurately realize not only
the B2T2 specification but also the desiderata for representing real-world tabular data.

In other instances, we diverge from B2T2’s specifications because they simply fail to hold
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of our implementation. This is the case for several of the specifications for renameColumns
and flatten. One of the former, for instance, requires that if some entry in the action list
renames a column c to c', then the type contained in the column named c' in the output
must be equal to that contained in column c in the input. However, because action list-based
functions act iteratively, it is possible that the column c' is again renamed by a subsequent
entry in the action list, so that c' does not even appear in the final schema. (A similar
issue arises for flatten, whose specification in B2T2 stipulates that the type stored in a
“flattened” column should be the element type of the list type it stored in the input; a column
that is flattened twice does not obey this specification.) These deviations arise because
B2T2 seems to envision functions like renameColumns and flatten as executing on their
arguments effectively in parallel: all arguments refer to the schema of the original table, and
operations on previously-modified columns are disallowed. By contrast, action lists—and
functions which proceed by recursion thereupon—are fundamentally sequential in nature.
It is, moreover, significantly more challenging even to state specifications analogous to B2T2’s
for our action list-based implementations of renameColumns and flatten. For the former,
for instance, in order to define the name c' to which a name c in the initial schema maps,
we must account for all intermediate names to which c is mapped in the course of traversing
the action list.

While it seems theoretically feasible to implement renameColumns or flatten in the
manner B2T2 specifies using our table representation, specifying the type of such a function
would likely be significantly more complex. We would need additional proof arguments to
prohibit invalid but well typed inputs (such as action lists that attempt to flatten the same
column multiple times) and would likely require non-definitional type casting at the data
level. Ultimately, we felt that the programmatic benefits of an action list-based approach
outweighed the losses in our realization of the B2T2 specification.

8 Conclusion

8.1 Summary

In this thesis, we have presented a dependently typed library for tabular programming in
Lean based on the Brown Benchmark for Table Types. It provides strong static guarantees
and contains formal proofs of the subset of the B2T2 specifications which it satisfies. Al-
though we deviate from the B2T2 specification in a few instances, we have successfully im-
plemented every function (or a close approximation thereof) contained in the specification.
For complex iterated table operations, we introduce the action list data structure to facilitate
relatively straightforward typing of these functions and to avoid the need for non-definitional
type-casting. While type-safety mechanisms like action lists contribute significant ostensible
complexity to our API, we employ Lean’s syntax-extension and metaprogramming features
to simplify interaction with the library and occlude from the user much of the complexity
required to realize type-correctness.

Most of the challenges our implementation encountered were due to the significant type-
level computation required by many table functions. Such computations created difficulties
for type-class resolution and revealed cases in which full reducibility of many data-level
functions is not only desirable but necessary. Additionally, the need to compute with proofs
as first-class data objects (at both the type and data levels) prevented us from taking full
advantage of the sophisticated tooling that exists for proof-writing in Lean’s propositional
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universe. Lastly, we found that some assumptions made by the B2T2 specification—which
was inspired largely by dynamically typed libraries [12]—did not easily lend themselves to
type-safe realizations, especially those concerning the behavior of multi-step table operations
that the specification conceives of as occurring in parallel. Even our modified versions of
these operations—those involving action lists—required significant type-level machinery and
highlighted the importance of metaprogrammatic notational simplification to avoid incurring
significant ergonomic costs compared to their counterparts in dynamically typed languages.

8.2 Related Work

Our table representation was motivated by existing approaches to encoding common data
structures with dependent types. In particular, we were influenced by Weirich’s encoding of
dictionaries in [21], which, although implemented using Haskell GADTs rather than true de-
pendent types, uses a similar type-level mechanism for storing name-indexed heterogeneous
data.

Another dependently typed tabular-data library, Idris2-Table [22], was developed while
work on this thesis was ongoing. Idris2-Table uses a table representation very similar to ours,
though it encodes schemata and table bodies using Idris’ built-in SnocList type, which is
optimized for tail- rather than head-concatenation. This optimization likely improves perfor-
mance for most table operations: functions that perform type-level schematic concatenation
typically append a small number of columns on the right to an arbitrarily large schema on
the left, and row insertions generally occur at the bottom rather than the top of the table.
The Idris implementation also elects—as we do—not to enforce uniqueness of column names
in schemata [23].

Another approach to table typing, developed in [17], uses record types to encode a
row-wise representation of tables. This is similar to the approach used by the TypeScript
implementation of B2T2: tables are represented as sequences of record-valued rows, which
store column-named entries in an unordered key-value mapping. This approach naturally
extends Hindley—Milner-style type systems that support record types and is amenable to
use in non-dependently typed settings. Several Haskell libraries, such as Frames [9], use
record types in conjunction with Template Haskell metaprograms to represent tabular data.
Like the TypeScript implementation, the approach in [17] has the advantage of allowing
column name validity to be checked by the type system directly in the form of first-class
record labels, dispensing with the complexity of requiring proof values for every column
access. However, the record-based approach did not prove amenable to representing more
complex functions in the B2T2 specification, such as the two pivot functions, and is unable
to fix a column ordering in its table representation [17]. Ideally, a tabular programming
framework would combine the ease of use of record-based approaches with the robustness
of a dependently-typed encoding.

8.3 Future Work

One aspect of tabular programming that we have largely ignored in our implementation is
performance. Optimization of the data structures used in our encoding may be one avenue
for improvement. As we previously noted, Idris2-Table uses SnocLists instead of Lists
for representing schemata and table bodies, which are better optimized for the most com-
mon forms of schematic and row concatenation that occur in the B2T2 API Alternatively,
as mentioned in section 3.2, search trees or hash maps could be used instead of lists for
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storing schemata and table bodies. These would likely require greater type-level overhead
(especially given that such a scheme would likely require separate storage of column order)
and may entail a loss of the definitional type-level reduction our list-based approach enjoys.
However, a sufficiently robust scheme might be able to enjoy the attendant performance ben-
efits while relying on either careful type definitions or type-casting infrastructure to prevent
issues at the type level.

We also see room for further improvement of the ergonomics of dependently typed tab-
ular programming tools like ours and for minimizing the complexity added by proofs and
other type-level machinery. Even the most elegant dependently typed table encodings in-
evitably incur a nontrivial amount of such typing-induced overhead. As we demonstrated in
section 6, notational and metaprogrammatic resources can serve as important tools to limit
the extent to which users are exposed to this overhead. Another important ergonomic con-
sideration, discussed in section 6.3, is the quality of error messages presented to a user when
interacting with the library. In our testing using B2T2’s sample buggy programs, the error
messages provided by Lean when presented with malformed tables or invalid table-function
applications ranged from reasonably illuminating to nearly indecipherable. As we noted,
the use of metaprograms to scaffold interaction with our library provides an opportunity to
supersede Lean’s built-in error messages with more informative ones of our own, which we
demonstrated in the cases of the name and header tactics. While we have explored such
functionality to a limited extent in this thesis, this may be a fruitful path for providing more
meaningful compile-time error messages to users, especially when syntactic conveniences
may occlude the actual values (like proof terms) responsible for static errors.
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